1000BASE SFP Transceivers for Gigabit Ethernet

Posted by Amelia Liu
1
Aug 28, 2015
317 Views

Gigabit Ethernet, which is standardized by the IEEE as the 802.3z standard, is a term describing various technologies for transmitting Ethernet frames at a rate of a Gigabit per second. It is currently used as the backbone in many enterprise networks. The 1000BASE SFP transceiver is an important part in Gigabit Ethernet applications, which is a hot-pluggable input/output device that plugs into a Gigabit Ethernet port/slot, linking the port with the network. There are a number of 1000BASE SFP transceivers that are available in Gigabit Ethernet in accordance with the customer application and distance capability required.

Classification of Gigabit Ethernet

Depending on the cable material, Gigabit Ethernet can be classified into fiber-based Gigabit Ethernet and copper-based Gigabit Ethernet.

  • Fiber-based Gigabit Ethernet

In fiber-based Gigabit Ethernet, 1000BASE-X is used in industry to refer to Gigabit Ethernet transmission over fiber. 1000BASE-X is a group of standards for Ethernet physical layer standards. These standards include: 1000BASE-SX (A fiber optic Gigabit Ethernet standard for operation over multi-mode fiber), 1000BASE-LX (a fiber optic Gigabit Ethernet standard using a long wavelength laser and a maximum RMS spectral width of 4 nm), 1000BASE-LX10 (which is very similar to 1000BASE-LX, but achieves longer distances over a pair of single-mode fiber), 1000BASE-BX10 (which is capable of up to 10 km over a single strand of single-mode fiber) or the non-standard 1000BASE-EX ( a industry accepted term to refer to Gigabit Ethernet transmission) and 1000BASE-ZX (a multi-vendor term to refer to Gigabit Ethernet transmission) implementations.

  • Copper-based Gigabit Ethernet

In copper-based Gigabit Ethernet, 1000BASE-CX, 1000BASE-KX, 1000BASE-T and 1000BASE-TX are four standards for Gigabit Ethernet over copper wiring. 1000BASE-CX uses copper cables as a medium. 1000BASE-KX is part of the IEEE 802.3ap standard for Ethernet Operation over Electrical Backplanes. 1000Base-T uses four pairs of Category 5 unshielded twisted pair cables to achieve Gigabit data rates. 1000BASE-TX is similar to 1000BASE-T but uses two pairs of wires rather than four for data transmission.

1000BASE SFP Transceivers for Gigabit Ethernet

1000BASE SFP transceiver (Small form-factor pluggable) is a device that interfaces a network device motherboard to a fiber optic or copper networking cable. It is designed to support Gigabit Ethernet, Fibre Channel and other communications standards. Since Gigabit Ethernet can be classified into fiber-based Gigabit Ethernet and copper-based Gigabit Ethernet, there are 1000BASE optical SFP transceivers and 1000BASE copper SFP transceivers used in Gigabit Ethernet.

As there are different physical layer standards for fiber-based Gigabit Ethernet, Different 1000BASE optical SFP transceivers may be used for different standards of Gigabit Ethernet. These 1000BASE SFP transceivers can be used for single-mode and multi-mode fibers of different reaches. For example, the 1000BASE-LX SFP transceiver can operate on standard single-mode fiber-optic link spans of up to 10km and up to 550m on any multi-mode fibers. When it is used over legacy multi-mode fiber type, its transmitter should be coupled through a mode conditioning patch cable.

1000BASE-LX SFP

1000BASE Copper SFP transceivers use copper lines for linking. In copper-based Gigabit Ethernet, the 1000BASE-T SFP module is the most commonly-used transceiver. Be compatible with the Gigabit Ethernet and 1000BASE-T standards, it operates on standard Category 5 unshielded twisted-pair copper cabling of link lengths up to 100m.

1000BASE-T SFP

As Gigabit Ethernet has been demonstrated to be a viable solution for increased bandwidth requirements for growing networks, the market is flooded with various 1000BASE SFP transceivers. Fiberstore supplies many kinds of 1000BASE SFP transceivers including the aforesaid 1000BASE-LX SFP transceiver and 1000BASE-T copper transceiver.

Originally published at http://www.fiber-optical-networking.com/

Comments
avatar
Please sign in to add comment.