As Data And Cloud Rise, Lines Are Blurring Between Developers And Data Scientists

With the rise of the cloud comes an explosion in the value of data. Because of the increasing prevalence of cloud infrastructure
in nearly every industry, data is easier to collect, and the tools
needed to glean intelligence from it are growing in accessibility. The
potential that data offers has catapulted it to the forefront of an
organization’s priorities. In fact, the demand for both data scientists
and data engineers is projected to grow by 39% by 2020, according to a
recent IBM report.
Aside from the spiking demand for data
professionals, what’s interesting is how the rise of data is reshaping
countless roles within companies, from marketers to operations
management. Almost any job critical to a business can be improved with data.
Content can be strategically marketed to consumers based on their
preferences and location; doctors can diagnose patients more accurately
with real-time disease studies; even sports stadiums can tap user data
to bring fans an interactive experience from the second they set foot
in the arena.
To create data-intensive apps, organizations are
looking to their developers and, in turn, their data scientists. As we
shift toward a data-first approach, these two teams -- which have
historically operated in close but separate silos -- are finding
themselves thrown together as they identify, design and create
technologies that harness data.
When joined together with the
right cloud tools and open technologies, developers and data
scientists can help each other to analyze and pick out key data trends
and patterns, build new AI and machine learning models, and make sure
that the right data gets to the right business stakeholders at the
right time -- whether they are customers, employees or decision makers.
Bridging The Gap
The
distinctions between data scientists and developers have always been
somewhat ambiguous, and it seems they continue to become more unclear
every day. For example, if you examine almost any programming model,
what you will find is that core analytics functions that data scientists
have traditionally managed (data handling, statistical analyses and
calculations) have always been at the heart of app development.
Data
scientists have always played a role in building these models by
creating the tools developers need to power their apps. However, this
has historically been done in a process akin to a relay handoff, with
data scientists translating incoming raw data into analytics-friendly
languages such as Python, analyzing it, building models with the
resulting insights and then handing it back over to the development
team, which then typically translates the data again into the best
programming language for its app. After building in these data models,
developers then provide feedback to the data science team on what needs
improvement and the process starts again.
In today’s world of
constant innovation, this pace is not fast enough. To build with data at
a competitive pace, it’s imperative for these two roles to take
advantage of new tools and approaches that allow them to work together. A
few ways include:
Turning to the cloud: Data
platforms and notebooks, powered by the cloud, allow teams such as data
scientists, developers and business analysts to work together across
different languages and data models.
Implementing a collaborative, trusted environment to share data:
Data owners are often hesitant to share intelligence across teams, as
they can be unsure of how to share data as well as what is safe to
share broadly. Creating a data governance strategy, as well as
implementing tools that simplify the cleansing and sharing of data with
trusted parties, helps break down barriers and facilitate
collaboration.
Eliminating data analysis silos:
Data analysis has typically been done in a conveyor belt-style
approach, with each data scientist performing a separate step. While
organized, this means a single mistake has the power to ruin an entire
workload. Automation tools can help to eliminate these silos by
simplifying and accelerating data discovery, cleansing and training,
thus giving data scientists the capacity to focus on analysis and
collaboration with others.
As an example, let’s take an airline
that wants to decrease the amount of turbulence each flight experiences.
Working together on a unified cloud platform geared toward both data science and app development,
the airline’s developer and data science teams can work in a
centralized environment to explore data patterns and identify ideas for a
solution. Previously, these teams would have had to spend a tremendous
amount of time passing data back and forth and iterating potential
ideas and machine learning models to build out instead of collaborating
on them together in one space.
This new level of communication
and iteration would yield a product ready to be put into production
much more rapidly. For example, imagine a mobile app for pilots that
would place the most relevant weather data, previous flight reports and
recommended route changes into their hands, helping them to achieve
the smoothest flight possible. In this case, the combined team could
bring in multiple data streams from flight routes, weather patterns and
previous flights.
Working side by side with developers,
data scientists can analyze trends across these sources, communicating
with developers to identify and visualize the most relevant findings.
As data scientists create machine learning models, developers can
simultaneously build out features around these models, giving immediate
feedback about what’s working and what’s not.
The Power Of Collaboration
Technology
is enabling developers and data scientists to do more and share more
while using fewer resources. To streamline processes and effectively
share knowledge, both teams need to be equipped with a cloud platform
and embrace a collaborative environment instead of being restricted to
working in separate silos with different tools and programming
languages.
But this shift is not just about adopting new
technologies -- a culture shift is also required. Business leaders must
also open a line of direct communication with their data science and
development teams to be sure a collaborative mindset is implemented and
adopted.
So, what can your organization do to best serve the people who handle such a valuable asset? More on that to come.
This Article Source is from : https://www.forbes.com/sites/forbestechcouncil/2017/09/14/as-data-and-cloud-rise-lines-are-blurring-between-developers-and-data-scientists/#1dfaecc75036
Post Your Ad Here
Comments